SOME ASPECTS OF FARM-REARING OF POST-LARVAE AND FRY OF COMMONLY CULTURED CARPS (PISCES: CYPRINIDAE), AND DEVELOPMENT OF METHODOLOGY SUITABLE FOR REARING OF POST-LARVAE AND FRY BY RURAL COMMUNITIES OF SRI LANKA

A THESIS PRESENTED

BY

MUNUGODA HEWAGE SOMA ARIYARATNE

to the

POSTGRADUATE INSTITUTE OF SCIENCE

in partial fulfillment of the requirement

for the award of the degree of

MASTER OF PHILOSOPHY

of the

UNIVERSITY OF PERADENIYA

SRI LANKA

May 2000

vi

TABLE OF CONTENTS

.

l

13

CHAPTER 1 **General Introduction**

1.Importance of fish as a source of animal protein to

people of developing countries, especially that of

rural sector

2. The two major sources of fish - marine and	
freshwater (including aquaculture)	2
3.Sri Lankan situation and why freshwater fishes are	
important	3
4.Freshwater fishery resources	8
5. Species used for culture fishery and pond aquaculture	9
6. Importance of seed sources	11
7.Why development of community based seed sources	
are important for Sri Lanka	12

8. Aim of the study.....

-

.

vii

Materials and Methods-General CHAPTER 2 14

Description and arrangement of experimental tanks	16
Preparation of tanks	16
Measurement of physico-chemical parameters	20
Sampling and length/weight measurements	20
Analyses of data	21

Allalyses of Uala.

Method of feeding of post-larvae and fry	21
Plankton studies	23

Effect of organic manure on growth and survival CHAPTER 3 of larvae of bighead carp, Aristichthys nobilis 26

Introduction	26
Materials and Method	28
Results	29

ົ	5
- 5	7
	\sim

CHAPTER 4 Effect of stocking density on the growth and survival of fry of common carp (Cyprinus carpio) 39

.

Introduction	39
Materials and Method	39
Results	40
Discussion	45

.

CHAPTER 5Effect of stocking density on the growth and
survival of post-larvae of Aristichthys nobilis,
Ctenopharyngodon idella, yprinus carpio and
Labeo rohita46

Introduction	46
Materials and Method	47

Results (a) Bighead carp and grass carp	48
(b)Rohu and common carp	50
Discussion	54

CHAPTER 6Effect of the supplementary feed on the growth
and survival of post-larvae of common carp and
rohu reared in cement tanks58

Introduction	58
Materials and Methods	60
ר 1.	<u> </u>

Results	61
Discussion.	66

CHAPTER 7Effect of cowdung on natural food production forthe rearing of post-larvae70

.

Introduction	70
Materials and Methods	72
Results	72
Discussion	79

CHAPTER 8	General Discussion	83
REFERENCES		110
APPENDICES	Appendix I	126

•

.

List of Tables		Page
Table 1.1	The extent and the fish species to be stocked in	
	various water bodies	04
Table 1.2	Aquaculture and Inland fish production target	
	(MT)	06
Table 1.3	Fish introductions into Sri Lanka (from De	
	Silva, 1988	10
Table 2.1	Experiments that were carried out in Udawalawe and	

ix

Table 2.1	Experiments that were carried out in Udawalawe and	
	Ginigathena Fisheries Stations	15
Table 2.2	Preparation of tanks for stocking post-larvae (PL)	19
Table 2.3	Method of feeding of post-larvae and fry in this trials	21
Table 2.4	The proximate composition(%) of fish feeds used	22
Table 3.1	Final(after 34 days) mean length, Specific growth and	
	percentage survival of bighead carp PL reared under	
	different treatments	29
Table 3.2	Temperature (Morning & Evening), dissolved	
	oxygen concentration (DO) and pH in PL rearing	
	tanks under different manure treatment	31

.

percentage survival of Cyprinus carpio fry at different

Table 4.3 Variation of volume of phytoplankton, volume of zooplankton and Secchi disc depth variation $(\pm sd)$ within Cyprimus carpio fry rearing..... Dissolved oxygen, temperature, pH and secchi disc Table 5.1 depth in bighead carp PL and grass carp PL rearing tanks at different stocking densities(SD)..... Table 5.2 Final mean survival of Aristichthys nobilis PL and

X

45

49

54

62

63

64

Ctenopharyngodon survival of Aristichthys nobilis PL

and Ctenopharyngodon idella PL reared under different stocking density regimes and different period of times..... 49 Table 5.3 Physico-chemical parameters Temperature, pH and Secchi disc depth in Cyprinus carpio PL and Labeo rohita PL rearing tanks at different stocking densities... 50 Table 5.4 Percentage survival (±sd) of Cyprimus carpio PL and Labeo rohita PL reared in different stocking densities... 53 Table 5.5 Mean length variation (±sd) of Cyprimus carpio PL and

> Labeo rohita PL reared in different stocking densities... 53

Table 5.6 Specific growth rate in length of *Cyprimus carpio* PL and Labeo rohita PL reared in different stocking densities Table 6.1 Physico-chemical parameters dissolved oxygen, (DO) pH and secchi disc depth in Cyprimus carpio PL and Labeo rohita PL rearing tanks under different feeding regimes..... Table 6.2 Percentage survival of *Labeo rohita* PL and *Cyprinus carpio* PL under different feeding regimes..... Table 6.3 Intermediate mean lengths and final mean length $(\pm sd)$

of Cyprimus carpio and Labeo rohita fry under

different feeding regimes

.

Specific growth rate in length on day 7, 14, 21 and final	
day of Labeo rohita and Cyprinus carpio fry under	
different feeding treatments	66
Appearance of plankton species in the fertilized tanks	74
	Specific growth rate in length on day 7, 14, 21 and final day of <i>Labeo rohita</i> and <i>Cyprinus carpio</i> fry under different feeding treatments Appearance of plankton species in the fertilized tanks

Table 7.2Physico-chemical
temperature, pH and secchi disc depth in tanks

manured with cowdung for natural food culture.....

Table 7.3	Proximate analyses of organisms serving as food for	
	pond fishes	82
Table 8.1	Comparison of the method used in the present study	

with the methods of Indrasena & Ellepola (1964)

Ellepola & Fernando (1966) and Hora & Pillay (1962) 89

79

List of Figures		Page
Fig.1.1	World fish production (marine and inland)	07
Fig.1.2	Inland fish production in Sri Lanka during the period	
	1977 to 1996	07
Fig.2.1	The set up of the cement tanks in Udawalawe Fisheries	
	Station	17
Fig.2.2	The set up of the cement tanks in Ginigathena Fisheries	

xii

—		
	Station	18
Fig.2.3	Selection of squares for counting plankton density	
	under stero-microscope	25
Fig.3.1	Mean length and weight of Aristichthys nobilis post-	
	larvae reared under different organic manure regimes	28
Fig.3.2	Dissolved oxygen levels in the control tank and these	
	that were treated with chicken manure and cowdung	30
Fig.3.3	Temperature and dissolved oxygen concentration in	
	tanks under different organic manure regimes	32
Fig.3.4	Changes of volume of phytoplankton and zooplankton	
	and the Secchi disc depth of the control tank and those	
	treated with cowdung and chicken manure	33
Fig.4.1	Variation of temperature, dissolved oxygen	
	concentration and pH with time under different	
	stocking densities	41
Fig.4.2	Changes of the volume of phytoplankton, zooplankton	
	and the secchi disc depth with time	44
Fig.5.1(a)	Variation of pH and Secchi disc depth during Labeo	
	rohita and Cyprinus carpio PL rearing at different	
	stocking densities	51
7-7		

'

Ŧ

Fig. 5.1(b) Temperature variation with time in the rearing of post-

larvae of Labeo rohita and Cyprinus carpio under

different stocking densities.....

xiii

Fig. 6.1Coefficient of variation of mean length of *C. carpio* and
Labeo rohita post-larvae reared (a)without
supplementary feed (b) with rice bran and (c)locally
formulated feed.65Fig. 7.1Variation of temperature, secchi disc depth and pH
with time in culture tanks.77Fig. 7.2Variation of plankton and Secchi disc depth in the77

.

•

	tanks fertilized with cow-dung	78
Fig.7.3	Variation of no. of rotifers and Secchi disc depth in	
	tanks fertilized with cow-dung	78

Plate 8.1The fry in net cage temporarily set in stream (UdawalaweFisheries Station) before being transported to the final
destination.

List of plates

105

xiv

iii

ABSTRACT

"Some Aspects of Farm-rearing of Post-larvae and fry of Commonly Cultured carps (Pisces:Cyprinidae), and Development of Methodology Suitable for Rearing of Postlarvae and fry by Rural Communities of Sri Lanka"

Munugoda Hewage Soma Ariyaratne

Board of Study in Zoological Sciences

Master of Philosophy

Of the

University of Peradeniya

Sri Lanka.

The major constraints in stocking water bodies and aquaculture ponds at present is the lack of fingerlings. As a result of the discontinuation of the state patronage for inland fisheries development in 1990, the development of a community-based method of fry and fingerling rearing became necessary more than

ever before.

In the present study the feasibility of producing fish fingerling with community participation was investigated. Most of the raw materials and feed used in the study are cheap and available locally. Cement tanks were used as the rearing vessels. Such trials could be carried out in a suitable location where water is trully available.

Tanks were cleaned, dried, disinfected and filled with screened water which was followed by fertilization with cowdung. The earlier seed production method has been modified by changing some steps and adding new steps (e.g. for control of macro zooplankton) in order to improve the survival and growth.

Cowdung was found to be a better organic manure for the rearing of postlarvae, (PL) although chicken manure could also be used. Fry rearing could be done no manuring.

iv

In the rearing of *Cyprinus carpio* fry, a high stocking density (380 fry m⁻²) could be used in the first two weeks followed by a low stocking density (95 fry m⁻²) in the next four weeks. The suitable stocking density for the rearing of PL of *Aristichthys nobilis* and *Ctenopharyngodon idella* was found to be 600 PL m⁻², and that for the PL of *Labeo rohita and Cyprinus carpio* was found to be 500 PL m⁻². Higher stocking densities affected the growth and percentage survival of the PL and also increased the duration of rearing period.

Supplementary feeding was essential for the PL for better growth and survival. Rice bran showed better results than a locally formulated feed (C2) in the rearing of *Labeo rohita* PL but *Cyprinus carpio* PL showed better results with C2. Fertilization with cowdung improved the population of rotifers in 7 - 10 days after the initial dosage. This period, therefore, is suitable for PL stocking. Subsequently application of fertilizer (cowdung) could be done on every 7th day. In order to improve survival the following steps are recommended in PL- and fry-rearing.

*Tanks should be suitably prepared during each rearing cycle before stocking.

*Kerosene could be used to control the predatory insects and 0.5 ppm

Dipterex could be used to control macro zooplankton.

*A hand net with a diagonal mesh size of 3 mm made of knotless net material is suitable for fish handling.

*If algal blooms appear, the surface algal mat should be reduced manually, and water should be kept running in order to remove the remaining algae. The method proposed here is important because it can be used by the rural fish farming community to produce their own fish seed.