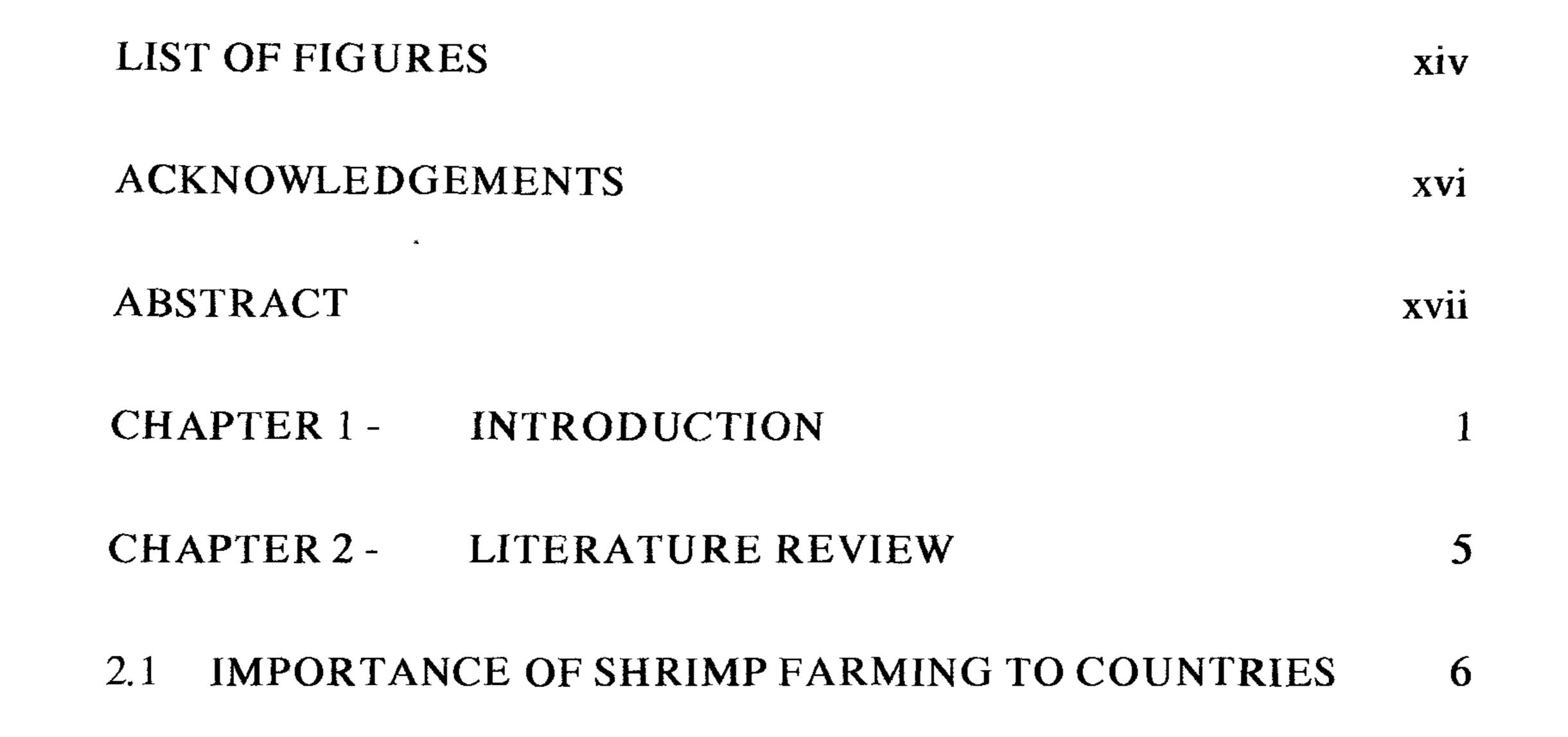
LIST OF TABLES

LIST OF CONTENTS


PAGE

ĩ

Х

8

CONTENTS

2.2 EXTERNAL AND BIOLOGICAL FEATURES OF SHRIMP 7

2.3 SHRIMP MUSCLE

	2.3.1 NATURE OF SHRIMP MUSCLE	8
	2.3.2 PROXIMATE COMPOSITION	8
	2.3.3 NON PROTEIN NITROGEN (NPN)	1(
	2.3.4 ATP DEGRADATION	1
	2.3.5 POST MORTEM CHANGES IN SHRIMP MUSCLE	13
	2.3.6 MELANOSIS	13
2.4	MICROFLORA OF SHRIMP	14
	2.4.1 QUANTITATIVE MICROFLORA	1.

2.4.2 QUALITATIVE MICROFLORA152.4.3 EFFECT OF PROCESSING OF SHRIMP20

i

× .

	2.4.3.1 WASHING	20
	2.4.3.2 BEHEADING	21
	2.4.3.3 PEELING	22
	2.4.3.4 BLANCHING/COOKING	22
	2.4.3.5 FREEZING	22
	2.4.4 QUANTITATIVE AND QUALITATIVE	23
	FLORA CHANGES DURING PROCESSING	23
	2.4.5 SPOILAGE MICROFLORA OF SHRIMP	30
	2.4.6 MICROORGANISMS OF PUBLIC HEALTH CONCERN	31
2.5	MICROFLORA OF POULTRY	37
	2.5.1 FOODBORNE POULTRY TRANSMITTED DISEASE	37
	2.5.2 SPOILAGE ORGANISMS	41
	2.5.3 POULTRY PROCESSING	42
	2.5.3.1 BLEEDING AND SCALDING	42
	2.5.3.2 DEFEATHERING	44
	2.5.3.3 EVISCERATION	45
	2.5.3.4 CHILLING	46

2.5.3.5 CHLORINATION

2.5.4 BACTERIAL ATTACHMENT

2.6 IDENTIFICATION AND TYPING OF E. COLI, SALMONELLA, STAPHYLOCOCCUS AUREUS AND VIBRIO PARAHAEMOLYTICUS

2.6.1 INTRODUCTION	51
2.6.2 PHENOTYPIC IDENTIFICATION AND	
CHARACTERISATION METHODS	52
2.6.2.1 BIOCHEMICAL IDENTIFICATION	52

2.6.2.1.1 ESCHERICHIA COLI 52 2.6.2.1.2 SALMONELLA 52 2.6.2.1.3 STAPHYLOCOCCUS AUREUS 53

ii

•

PAGE

47

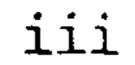
49

51

PAGE

2.6.2.2 SEROLOGICAL IDENTIFICATION	54
2.6.2.2.1 ESCHERICHIA COLI	54
2.6.2.2.2 SALMONELLA	55
2.6.2.2.3 STAPHYLOCOCCUS AUREUS	55
2.6.2.2.1 VIBRIO PARAHAEMOLYTICUS	55

2.6.2.3 PHAGE TYPING	56
2.6.2.3.1 ESCHERICHIA COLI	56
2.6.2.3.2 SALMONELLA	57
2.6.2.3.3 STAPHYLOCOCCUS AUREUS	57


2.6.2.4 BACTERIOCIN TYPING	58
2.6.2.4.1 ESCHERICHIA COLI	58
2.6.2.4.2 SALMONELLA	58
2.6.2.4.1 STAPHYLOCOCCUS AUREUS	59

2.6.2.5 ANTIBIOGRAM TYPING

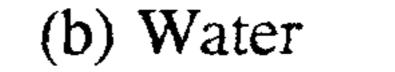
59

2.6.2.6 APPLICATION OF PHENOTYPIC TYPING METHODS TO EPIDEMIOLOGICAL INVESTIGATIONS

2.6.3	GENOTYPIC CHARACTERIZATION	63
	2.6.3.1 PLASMID PROFILING	63
	2.6.3.2 PLASMID FINGERPRINTING	65
	2.6.3.3 CHROMOSOMAL DNA FINGERPRINTING	65
	2.6.3.4 APPLICATION OF GENOTYPIC TYPING	
	METHODS IN EPIDEMIOLOGICAL	
	INVESTIGATIONS AND FOOD RELATED	
	STUDIES	67

3.1	SHRIMP SAMPLING	73
	3.1.1 INTRODUCTION	73
	3.1.2 FARM OPERATIONS AT THE SHRIMP HARVEST	73
	3.1.2.1 HARVESTING OF FARM SHRIMP	73

CHAPTER - 3 MATERIALS AND METHODS 72


74

3.1.2.2 PACKING FOR TRANSPORTATION

3.1.3 PROCESSING TECHNIQUE FOR SHRIMP	74
3.1.3.1 DEHEADING	74
3.1.3.2 PEELING	74
3.1.3.3 DEVEINING	75
3.1.3.4 COOKING	75
3.1.4 SAMPLING PROCEDURE	75
3.1.4.1 SHRIMP, POND WATER AND SHRIMP FEED	75

3.1.5 TESTING PLAN - SHRIMP, POND WATER AND FEED 76

3.1.6 PLATING TECHNIQUE	77
3.1.6.1 SHRIMP	77
3.1.6.2 POND WATER	77
3.1.7 CULTURE MEDIA AND ENUMERATION OF	
BACTERIA	77
3.1.7.1 SHRIMP AND WATER	77
3.1.7.1.1 TOTAL BACTERIAL COUNTS	77
(a) Shrimp	77
(b) Water	78
3.1.7.1.2 ENTEROBACTERIACEAE COUNTS	78
(a) Shrimp	78

78

iv

		PAGE
3.2	POULTRY SAMPLING	8 6
	3.2.1 INTRODUCTION	86
	3.2.2 POULTRY PROCESSING TECHNIQUE	86
	3.2.2.1 SLAUGHTERING	8 6
	3.2.2.2 SCALDING	86
	3.2.2.3 PLUCKING	86
	3.2.2.4 EVISCERATION	86
	3.2.2.5 CHILLING	86

	3.2.3 POULTRY SAMPLING PROCEDURE	88
	3.2.4 POULTRY PLATING TECHNIQUE	88
	3.2.5 DETECTION OF COLIFORMS	88
	3.2.6 CONFIRMATION OF ESCHERICHIA COLI	88
3.3	API TESTS	88
	3.3.1 API 20E	88
	3.3.2 API TEST FOR STAPHYLOCOCCUS	89
3.4.	STORAGE OF ISOLATED CULTURES	89

3.5	PLASMID PROFILE ANALYSIS	89
	3.5.1 BIRNBOIM AND DOLY METHOD	89
	3.5.2 SHORT METHOD	90
	3.5.3 MODIFIED METHOD FOR	90
	STAPHYLOCOCCUS AUREUS	90
3.6	RIBOTYPING METHOD	91
	3.6.1 BACTERIAL GENOMIC DNA EXTRACTION,	
	DIGESTION AND ELECTROPHORESIS	91
	3.6.2 SOUTHERN TRANSFER	91
	3.6.3 DNA HYBRIDISATION AND DETECTION	91

3.7 ANTIBIOTIC RESISTANCE TYPING

- - 3.7.1 USING OXOID DISCS 91 • 3.7.2 MAST DIAGNOSTICS 92 3.7.3 MAST DIAGNOSTICS 92

V.

3.8.	ENTEROTOXIN PRODUCTION	92
	3.8.1 ENTEROTOXIN - HEAT STABLE (ST)	92
	3.8.2 HEAT - LABILE TOXIN	93
	3.8.3 STAPHYLOCOCCAL ENTEROTOXIN DETECTION	94

95

97

CHAPTER 4 -SOME MICROBIOLOGICAL SYUDIES OF FARM SHRIMP PROCESSING 96

INTRODUCTION 4.1 97

4.2 EXPERIMETAL DETAILS 97

4.3 **RESULTS**

4.3.1 TOTAL BACTERIAL COUNTS	97
4.3.2 TOTAL ENTEROBACTERIACEAE COUNTS,	
COLIFORMS AND ESCHERICHIA COLI	102
4.3.3 INCIDENCE OF SALMONELLA IN FARM	108
SHRIMP, PROCESSING/PLANT, POND WATER	
AND SHRIMP FEED	108
4.3.4 STAPHYLOCOCCUS AUREUS IN SHRIMP	114
ALONG THE PROCESSING LINE	
4.3.5 TOTAL VIBRIO COUNTS AND VIBRIO	
PARAHAEMOLYTICUS IN FARM SHRIMP	
DURING PROCESSING AND FROM POND WATER	118

4.4. DISCUSSION

125

132

CHAPTER 5 -TYPING OF SALMONELLA ISOLATES FROM FARM SHRIMP

PAGE

5.1	INTRODUCTION	133
5.2.	RESULTS	134
	5.2.1 API PROFILING	134
	5.2.2 PLASMID PROFILING	134
	5.2.3 RIBOTYPING	134
	5.2.4 ANTIBIOTIC RESISTANCE TYPING	140

5.2.5 RELATIONSHIP BETWEEN DIFFERENT TYPING METHODS 140

5.3 DISCUSSION 142

CHAPTER - 6TYPING E.COLI ISOLATED FROM146SHRIMP AND PONDWATER

6.1. INTRODUCTION 147

.

6.2 **RESULTS**

147

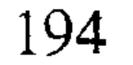
	6.2.1 PLASMID PROFILING	147
	6.2.2 RIBOTYPING	154
	6.2.3 API PROFILE TYPING	163
	6.2.4 ANTIBIOTIC RESISTANCE TYPING	165
	6.2.5 RELATIONSHIP BETWEEN PLASMID	
	PROFILES, API PROFILES AND RIBOPROFILES	170
	6.2.6 ENTEROTOXIN DETECTION AND E.COLI 0157	172
3	DISCUSSION	176

CHAPTER - 7TYPING OF STAPHYLOCOCCUS AUREUSISOLATES FROM SHRIMP181

7.2 RESULTS

6.

182


- -

vii

PAGE

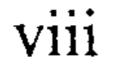
7.2.1 PLASMID PROFILING	182
7.2.2 API PROFILE	186
7.2.3 RIBOTYPING	188
7.2.4 ANTIBIOTIC RESISTANCE TYPING	191
7.2.5 ENTEROTOXIN PRODUCTION	191

7.3 DISCUSSION

CHAPTER - 8 VIBRIO PARAHAEMOLYTICUS **INVESTIGATIONS** 199

- 8.1 INTRODUCTION 200
- 8.2 RESULTS 200

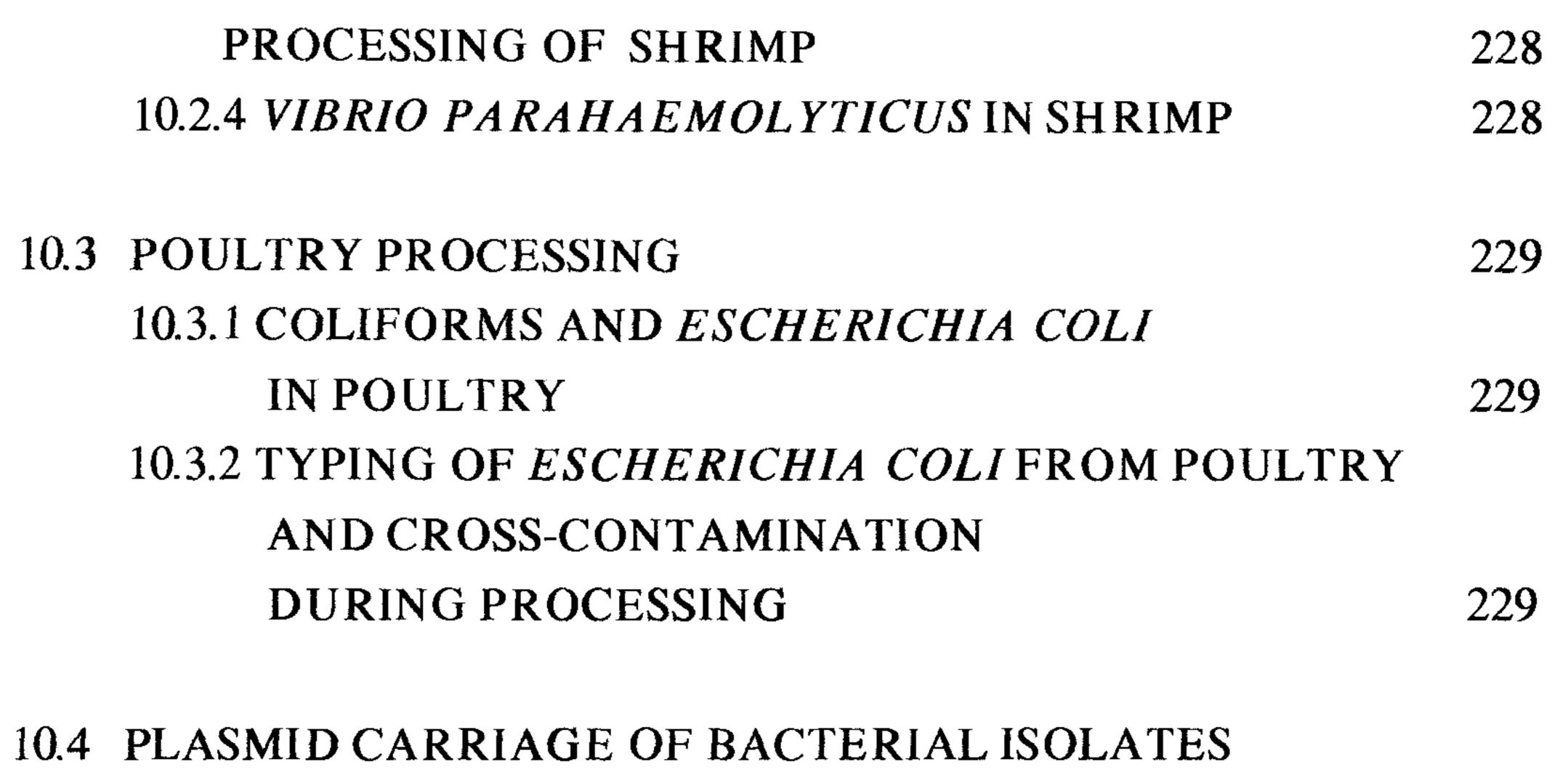
8.2.1 PLASMID PROFILING 200


205

CHAPTER - 9 SOME MICROBIOLOGICAL STUDIES ASSOCIATED WITH COMMERCIAL POULTRY PROCESSING

- 9.1 INTRODUCTION 206
- 9.2 RESULTS 206 9.2.1 COLIFORM COUNTS 206 9.2.2 PLASMID PROFILING 207 9.2.3 API PROFILE ANALYSIS 212 9.2.4 ANTIBIOTIC RESISTANCE TYPING 216

9.3 DISCUSSION


218

.

CHAPTER 10 - GENERAL DISCUSSION 225

10.1 INTRODUCTION	226
10.2. SHRIMP	226
10.2.1 TBC AND ENTERIC ORGANISMS ON SHRIMP	
DURING PROCESSING	226
10.2.2 SALMONELLA ON SHRIMP	227
10.2.3 STAPHYLOCOCCUS AUREUS DURING	

FROM POULTRY, SHRIMP AND POND WATER 231

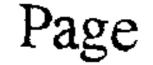
10.5INVESTIGATIONS ON BACTERIAL ISOLATES FROM
SHRIMP AND POND WATER23110.5.1SALMONELLA23110.5.2ESCHERICHIA COLI23210.5.3STAPHYLOCOCCUS AUREUS233

10.6 CONCLUSIONS 241

10.7 FUTURE WORK 242

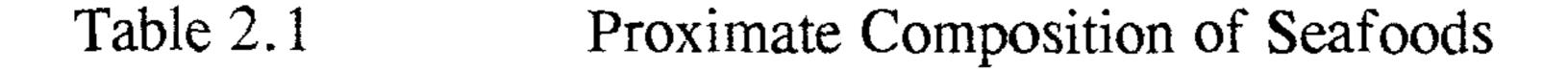
BIBLIOGRAPHY

Page



290

ix


LIST OF TABLES

9

•••

25

on a weight/weight basis

Table 2.2 17 Microflora - Temperate Shrimp

Table 2.3 Microflora - Tropical Shrimp 18

Table 2.4 Microflora - Cultured Shrimp 19

Effect of processing on bacterial counts in shrimp Table 2.5 24

Effect of processing on bacterial counts in Table 2.6

shrimp in Sri Lanka

Table 2.7 Effect of processing on bacterial counts in shrimp in Malaysia. 26

28 Effect of processing on Pandulus shrimp Table 2.8

Effect of processing on microflora of Table 2.9 29 shrimp (Penaeus spp.).

Characteristics of Salmonella Table 3.1

Identification scheme for

Vibrio parahaemolyticus

85

82

Х

Table 4.1	Variation in Geometric Mean Of Bacterial Counts Of Farm Shrimp and Through Processing (First Sampling Visit).	98
Table 4.2	Variation in geometric mean of bacterial counts of farm shrimp through processing (Second Sampling Visit).	99
Table 4.3	Variation of Enterobacteriaceae and coliforms counts during processing of	100

	farm shrimp (First Sampling Visit).	103
Table 4.4	Variation of Enterobacteriaceae and coliforms counts during processing of farm shrimp (Second Sampling Visit).	104
Table 4.5	Isolation of <i>E.coli</i> in farm shrimp during processing at plant X and in pond water.	109
Table 4.6	Recovery of Salmonella from farm shrimp from farm A through processing at Plant X.	110
Table 4.7	Isolation of Salmonella from shrimp after harvest, pond water and shrimp feed.	111
Table 4.8	Recovery of Salmonella at the receiving point of the processing plant.	112

Table 4.9

Variation of Staphylococcus aureus during

	processing of farm shrimp.	115
Table 4.10	Variation of <i>Staphylococcus aureus</i> during processing of farm shrimp (second Visit).	116
Table 4.11	Staphylococcus aureus isolation from the hands of food handlers.	117
Table 4.12	Variation of Total vibrios in processing of farm shrimp.	119
Table 4.13	Isolation of Vibrio Parahaemolyticus in farm shrimp during processing at plant X.	123
Table 5.1	Results of API profiling of isolates of Salmonella from shrimp.	135

Table 5.2

Table 5.3

Ribo patterns of Salmonella isolates from shrimp.

139

Results of plasmid profiling, API profiling and antibiotic testing of *Salmonella* isolates from shrimp. 14 141

xi

Page

Table 6.1	Distribution of plasmid profiles of <i>E.coli</i> in shrimp and pond water (First Sampling).	148
Table 6.2	Distribution of plasmid profiles of <i>E.coli</i> in shrimp and pond water (Second Sampling).	149
Table 6.3	Percentage incidence of different plasmid profiles during first and second sampling visit.	153
Table 6.4	Distribution of <i>Bst</i> EII ribo patterns of	

Table 6.4	Distribution of <i>Bst</i> EII ribo patterns of nine <i>E.coli</i> in relation to sampling sites (First Visit).	157
Table 6.5	Distribution of <i>Bst</i> EII ribo patterns of seventeen <i>E.coli</i> in relation to sampling sites (Second Visit).	158
Table 6.6	Comparison of Bst EII and Eco R1 fingerprint of E.coli isolates (Second Visit)	162
Table 6.7	Distribution of API profiles of <i>E.coli</i> in first and second sampling visits.	164
Table 6.8	Antibiotic resistance pattern of <i>E.coli</i> isolates in shrimp and pond water (Visit 1).	166
Table 6.9	Antibiotic resistance pattern of <i>E.coli</i> isolates in shrimp and pond water (Visit 2).	168
Table 6.10	Distribution of plasmid profiles of E.coli	

isolates into API profiles (First and Second Visits). 171

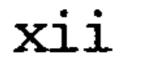
- Table 6.11Relationship between API profiles and ribo profiles.173
- Table 6.12Plasmid profiles, API profiles and ribotypes ofE.coli isolates from first visit.
- Table 6.13Plasmid profiles, API profiles and ribotypes of
E.coli isolates from first visit.
- Table 7.1Percentage incidence of each plasmid
profile of Staphylococcus aureus
(Visit 1 and Visit 2).

184

174

175

Table 7.2


Distribution of plasmid profiles of strains of *Staphylococcus aureus* in relation to sampling sites.

185

187


Correspondence of *S.aureus* plasmid profiles to API profiles.

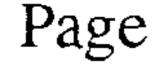

Table 7.4	Distribution of ribo patterns off <i>Staphylococcus aureus</i> in relation to site of isolation.	190
Table 7.5	Results of plasmid profiling and antibiotic resistance of <i>Staphylococcus aureus</i> (Visit 1).	192
Table 7.6	Results of plasmid profiling and antibiotic resistance of <i>Staphylococcus aureus</i> (Visit 2).	193
Table 8.1	Differentiation of <i>V.parahaemolyticus</i> isolates by plasmid profiles.	202

Table 8.2	Distribution of different plasmid profiles of <i>V.parahaemolyticus</i> among isolation sites.	203
Table 9.1	Coliforms and <i>E.coli</i> from chicken neck skin and swabs taken throughout the processing plant.	210
Table 9.2	Strains of <i>E.coli</i> isolated from different sites throughout the plant.	211
Table 9.3	Percentage carriage of the strains of <i>E.coli</i> in different sites throughout the plant.	213
Table 9.4	Strains of E.coli detected after bleeding.	214
Table 9.5	Distribution of API profiles within the plasmid profiles of <i>E.coli</i> .	215

Table 9.6	Relationship of tetracycline resistance pattern and plasmid profiles of <i>E.coli</i> strains.	217
Table 10.1	Summary of typing of <i>E.coli</i> from poultry.	236
Table 10.2	Summary of typing of <i>E.coli</i> Isolates from shrimp and pond water.	237
Table 10.3	Summary of typing of Salmonella isolates from shrimp.	238
Table 10.4	Summary of typing of <i>Staphylococcus aureus</i> isolates from shrimp.	239

LIST OF FIGURES

12

74a

87

151

Fig. 2.1 Degradation of ATP in shrimp

Fig. 3.1 Flow Chart - Shrimp Processing

Fig. 3.2 Flow Chart - Poultry Processing

- Fig. 4.2 Enterobacteriaceae counts in shrimp 105
- Fig. 4.3Enterobacteriaceae counts in shrimp. Comparison oflactose positives and lactose negatives Visit 1.106
- Fig. 4.4Enterobacteriaceae counts in shrimp. Comparison oflactose positives and lactose negatives Visit 2.107
- Fig. 4.5 Vibrios in farm shrimp sucrose positives and

Fig. 4.6Vibrios in farm shrimp - sucrose positives andsucrose negatives - Visit 2.121

Fig. 5.1 Plasmid profiles of *Salmonella* isolates from shrimp. 136

Fig. 5.2Ribotyping of Salmonella strains isolated fromfarm shrimp using enzymes Eco RI and Hpa II,138

Fig.5.3 Collection of samples at farm G. 143

Fig. 6.1 Plasmid Profiles of *E. coli* strains isolated from

shrimp in (visit 1).

xiv

152

155

156

160

183

189

Fig. 6.2 Plasmid Profiles of *E. coli* strains isolated from shrimp (visit 2).

Fig. 6.3 Ribotyping of plasmid-free *E. coli* strains from shrimp and pond water (Visit 1) using *Bst* EII restriction enzyme.

Fig. 6.4 Ribotyping of plasmid-free *E. coli* strains from shrimp and pond water (Visit 2) using *Bst* EII

restriction enzyme.

Fig. 6.5 Ribotyping of plasmid-free *E*. *coli* strains from shrimp and pond water (Visit 1) using *Eco* RI restriction enzyme.

Fig. 6.6 Ribotyping of plasmid-free *E. coli* strains from shrimp and pond water (Visit 2) using *Eco* RI restriction enzyme. 161

Fig. 7.1 Plasmid profiles of *Staphylococcus aureus* strains isolated from shrimp.

Fig.7.2 Ribo strains of plasmid-free *Staphylococcus aureus* strains.

Fig.8.1Plasmid profiles of Vibrio parahaemolyticus isolatesfrom shrimp and pond water.201

Fig.9.1a Ten plasmid profiles of *E. coli* isolates from chicken.

208

Fig.9.1b Seven of the plasmid profiles of *E.coli* isolates from chicken.

XV