Table of Contents

Statement of original	lity	•	•	•	•	•	•	•	i
Thesis dedication	•	•	•	•	•	•	•	•	ii
Acknowledgments	•	•	•	٠	•	٠	•	٠	iii
Abstract .	•	•	•	٠	•	٠	٠	٠	iv
Table of Contents	•	•	•	Ŧ	•	٠	•	•	viii
List of Figures.	•	•	•	•	•	•	•	•	XV

List of Tables.	•	•	•	•	•	•	•	•	xxi
List of Abbreviations	•	•	•	•	•	•	•	•	xxiv

CHAPTER 1

•

Literature Review

- Shrimp aquaculture and the impact of disease . . . 1.1
- YHV and related viruses, their distribution and association with disease 2 1.2
- Discovery of YHV as the cause of yellow head disease in Thailand. 2 1.2.1
- Gross clinical signs 3 1.2.2
- Natural occurrences of YH-related viruses in other geographic regions 3 1.3 1.3.1 Lymphoid organ virus and gill-associated virus in Australia. 3

1.3.2	YH-like virus in Taiwan	•	•	•	•	•	•	5
1.3.3	YHD elsewhere in Asia	•	•	•	•	•	•	5
1.3.4	YH-like viruses in Western	Hemisp	here shi	rimp	•	•	•	5
1.4	Modes of transmission	•	•	•	•	•	•	6
1.5	Host range	•	•	•	•	•	•	7
1.6	Chronic infection states	•	•	•	•	•	•	8
1.7	Physico-chemical properties	of viric	ons	•	•	•	•	9
1.8	Morphology and morphogen	nesis of	virus pa	rticles	•	•	•	9
1.9	Virion structural proteins	•	٠	•	•	•	•	1
1.10	Taxonomy	•	•	•	•	•	•	1

1.10.1 Characteristics of the *Roniviridae* compared to other nidoviruses . 12 1.11 Okavirus genome organization 15 Genotypic variation amongst YH-complex viruses . 1.12 20 1.13 Methods used to detect YH-complex viruses . . . 20 • 1.13.1 Histology 20 • 1.13.2 Transmission electron microscopy 22 • •

viii

1.13.3	Cell culture	•	•	•	•	22
1.13.4	Immuno-histochemistry, western blotting a	nd prot	ein dot-	-blots	•	22
1.13.5	In situ hybridisation	•	•	•	•	23
1.13.6	Reverse transcription-polymerase chain rea	action	•	•	•	23
1.13.7	Real-time RT-PCR	٠	•	•	•	24
1.14	Genetic variation in RNA viruses .	•	•	•	•	25
1.15	Genetic recombination in RNA viruses	•	•	•	•	26
1.16	Viral phylogenetic analyses used in molecu	ılar epi	demiolo	ogy stud	lies	28
1.17	Overall objectives of the study .	•	•	•	•	30
1.17.1	Hypotheses to be tested	•	•	•	•	31
1.17.2	Research strategy	•	•	•	•	31

•

-

•

CHAPTER 2

General Materials and Methods

- ·

2.1	Enzymes	•	•	•	•	33
2.2	Chemicals	•	•	•	٠	33
2.3	Reagents, Buffers, Solutions and Media	•	•	•	٠	34
2.6	Sources of shrimp samples	•	٠	•	•	35
2.7	Shrimp sample preservation and storage	•	₽	•	•	35

2.8	Plasmid cloning vector and bacterial strain	•	•	•	•	38
2.9	Oligonucleotide primers	•	•	•	•	38
2.10	RNA isolation.	•	•	•	●	38
2.11	DNase digestion	•	•	•	•	39
2.12	cDNA synthesis	•	•	•	•	40
2.12.1	Synthesis of cDNA primed using random h	examer	primers	••	•	40
2.12.2	Synthesis of cDNA primed with oligo-dT for	or use in	3'-anc	hored R	T-PCR	40
2.12.3	Purification of oligo-dT-primed cDNA	•	•	•	•	40
2.13	Actin RT-PCR for RNA quality assessment	•	•	•	•	40
2.14	RT-PCR protocols and conditions .	•	•		•	41

2.15	Agarose gel electrophoresis	•	•	•	•	41
2.16	Purification of DNA products.	•	٠	•	•	41
2.17	Cloning of DNA into pGEM-T Easy vector	•	•	٠	•	42
2.17.1	Preparation of competent <i>E. coli</i> DH5α cells	•	•	•	•	42
2.17.2	DNA Ligation	•	•	•	Ŧ	42
2.17.3	Transformation of E. coli DH5 α competent c	cells	•	•	•	42

.

44

•

2.19 Nucleotide and amino acid sequence analysis . . .

CHAPTER 3

Genetic diversity and phylogenetic analysis of viruses in the yellow head

complex using segments in the replicase gene

3.1	INTRODUCTION	•	•	46
3.2	MATERIALS AND METHODS	•	•	47
3.2.1	First generation RT-nested PCR	•	•	47
3.2.2	Second generation RT-nested PCR	•	•	48
3.2.3	Third generation RT-nested PCR	•	•	49
3.2.4	Purification and sequencing of the PCR products .	•	•	49
3.2.5	Sequence analysis and phylogenetic relationships .	•	₽	50
3.3	RESULTS	•	•	51
3.3.1	First generation RT-nested PCR	•	•	51
3.3.2	Second generation RT-nested PCR	•	•	51
3.3.3	Third generation RT-nested PCR	•	•	53
3.3.4	Nucleotide sequence analysis	•	•	54
3.3.5	Phylogenetic analyse using nucleotide sequences .	•	•	54
3.3.6	Pairwise comparisons of nucleotide sequences .	•	•	59
3.3.7	Phylogenetic analyses using deduced amino acid sequences	5.	•	66
3.3.8	Pairwise comparisons of amino acid sequences .	•	•	66
4.0	DISCUSSION	•	•	70

CHAPTER 4

Sequence analysis of the 3'-genomic region of genotype 3 (Vietnam),

genotype 4 (India) and genotype 5 (Thailand) containing the structural protein

genes

•

4.2.1	Isolate	es	•	•	•	•	•	•	•	•	79
4.2.2	Ampli	fication	of the	genom	e regi	on from	n the OR	F3 C-te	rminus	to	
	the 3'-	-poly-A	tail	•	•	٠	• •	•	•	•	79
4.2.2.1	Prime	r design	•	•	•	•	•	•	•	•	79
4.2.2.2	3'-pol	y-A-anc	hored	RT-PC	R met	hod.	٠	•	•	•	80
4.2.3	Prime	rs used t	to amp	lify the	ORF:	3 gene	٠	٠	٠	•	81
4.2.4	RT-PO	CR ampl	ificatio	on of N	- and	C-term	inal sequ	iences o	f the O	RF3 gene	82
4.2.5	PCR a	mplifica	ation of	f the ce	ntral (ORF3 g	gene regi	on of ge	enotype	s 3 and 4	83
4.2.5.1	Prime	r design	•	•	•	•	•	•	•	•	83
4.2.5.2	RT-PC	CR	₽	•	•	•	•	•	٠	•	83
4.2.6	PCR a	mplifica	ation of	f the ce	ntral (ORF3 g	gene regi	on of ge	enotype	3 as two	
	overla	pping se	equence	es	•	•	•	•	•	•	84
4.2.6.1	Prime	r design	•	•	•	٠	•	•	•	₽	84
4.2.6.2	RT-PC	CR and s	semi-ne	ested P	CR	•	٠	•	•	٠	84
4.2.6.3	Seque	nce anal	ysis of	the OF	xF3 ge	ene of g	genotype	s 3 and	4.	●	84
4.2.7	PCR a	mplifica	ation of	f the Ol	RF2 g	ene and	l flankin	g IGRs	1 and 2	•	85
4.2.7.1	Prime	r design	•	•	•	•	٠	₽	٠	٠	85
4.2.7.2	RT-PC	CR	•	•	•	•	•	•	•	•	86
4.2.8	Seque	nce anal	ysis of	amplic	cons s	panning	g and OF	RF2 gen	e and fl	anking	

•

1

•

	IGRs	•	•	•	•	•	•	86
4.2.9	PCR amplification of the	ORF4 ger	ne region	n of gen	otype 5	•	٠	87
4.2.10	Sequence analysis and ali	gnments	•	•	•	•	•	87
4.2.11	Phylogenetic analyses of	ORF2 and	1 ORF3	gene sec	luences	•	•	88
4.2.12	Sequence analysis of an N	I-terminal	ORF3	gene reg	ion of 2	8 YH-		
	complex virus field isolat	es.	•	•	•	•	•	88
4.3	RESULTS	٠	•	•	•	•	•	89
4.3.1	ORF4 gene variation amo	ngst geno	types 1,	2, 3, 4 a	and 5	•	•	89
4.3.2	ORF3 gene amplification	and seque	ence ana	lysis for	genoty	pes 3 ar	nd 4	93
4.3.3	Features of the ORF3 gen	e coding s	sequence	es of ger	otypes	3 and 4	•	96
4.3.4	Phylogenetic analysis of (ORF3 gen	e codina	z seauen	ces	-	_	102

I hyrogenetic analysis of Orth's gene counting sequences . 102

4.3.5 Pairwise comparisons of ORF3 gene nucleotide and amino acid sequences 103

4.3.6 Variation in the gp116 N-terminus amongst isolates of the six genotypes 105

Multiple alignments and phylogenetic analyses of ORF2 gene sequences 4.3.7

•

of genotypes 1, 2, 3, 4 and 5 107

4.3.8 Pairwise comparisons of ORF2 gene nucleotide and amino acid sequences 111

.

.

Evidence of natural genetic recombination amongst three genotypes in the

yellow head virus complex

5.1	INTRODUCTION	•	•	•	•	126
5.2	MATERIALS AND METHODS .	•	•	•	•	127
5.2.1	Origin of Penaeus monodon samples.	•	•	•	•	127
5.2.2	RNA isolation and cDNA synthesis .	•	•	•	•	129
5.2.2	Amplification of glycoprotein gene (ORF3)) segme	nts	•	•	129
5.2.2.1	PCR primer design	•	•	•	•	129
5.2.2.2	RT-nested PCR	•	•	•	•	130
5.2.2.3	PCR product purification and sequencing	•	•	•	•	131
5.2.2.4	Sequence alignments and phylogenetic anal	lysis	•	•	•	131
5.2.3	Amplification of the genome region betwee	en the O	RF1b a	nd ORF	3	
	gene amplicons	•	•	•	•	132
5.2.3.1	Putative recombinant isolates .	•	•	•	•	132
5.2.3.2	Representative parental genotype isolates	•	•	•	•	133
5.2.4	RT-PCR confirmation of putative recombin	ants	•	•	•	134
5.2.5	SimPlot analysis	•	•	•	•	138
5.2.6	LARD breakpoint analysis	•	•	•	•	138
5.3	'RESULTS	•	•	•	•	139
5.3.1	Amplification of partial ORF3 gene sequen	ces	•	•	•	139
5.3.2	Comparison of phylogenetic trees using OF	RF3 and	ORF1t) gene r	egions	140

	during PCR	•	•	•	155
5.3.5	SimPlot analysis of recombinant sequences .	•	•	•	158
5.3.6	Breakpoint analysis of recombinant sequences	•	•	•	159
5.4	DISCUSSION	•	•	•	162

CHAPTER 6

.

Development of improved RT-PCR tests for detection of yellow head complex virus genotypes

.

.

6.1	INTRODUCTION	•	•	•	•	171
6.2	MATERIALS AND METHODS .	•	•	•	•	173
6.2.1	Origin of Penaeus monodon samples.	•	•	•	•	173
6.2.2	Primer design	.ª.	•	•	•	173
	a) YHc RT-nested PCR					
	b) YHc qRT-PCR					
6.2.3	RNA isolation and cDNA synthesis .	•	•	٠	•	175
6.2.4	RT-PCR test methodology	•	•	•	•	175
6.2.4.1	YHc RT-nested PCR	•	•	•	•	175
6.2.4.2	Sensitivity limit of the YHc RT-nested PC	CR.	•	٠	•	175
6.2.4.3	Specificity of the YHc RT-nested PCR	•	•	•	٠	176
6.2.4.4	Comparison of the YHc RT-nested PCR a	nd OIE	RT-PC	R Tests	s 1 and 2	177
6.2.4.5	Phylogenetic analysis using the 95 nt YHC	e RT-nes	sted PC	'R ampl	icon	177
6.2.5	YHc qRT-PCR	●	•	●	-	177
6.2.5.1	Optimization of the YHc real-time qRT-P	CR	•	٠	•	177
6.2.2.2	Detection sensitivity of the YHc qRT-PCI	λ.	•	٠	•	179
6.2.2.3	YHc qRT-PCR reproducibility .	•	•	•	•	179
6.3	RESULTS	•	•	٠	•	180
6.3.1	Primer selection for the YHc RT-nested P	CR	•	•	•	180
6.3.2	Analytical specificity of the YHc RT-nest	ed PCR	•	•	•	181
6.3.3	Initial assessment and optimisation of the	YHc R7	-neste	d PCR	•	182

6.3.4 Expanded assessment of the YHc RT-nested PCR . . 182 • 6.3.5 Analytical sensitivity of the YHc RT-nested PCR . 185 • 6.3.6 Comparison of YHc RT-nested PCR with OIE PCR Tests 1 and 2 . 187 ORF1b gene sequence comparison of genotypes 1, 2, 3 and 4 in regions 6.3.7 spanned by primers used OIE PCR Tests 1 and 2 . 190 • 6.3.8 Phylogenetic relationships defined using the 95 nt ORF1b gene sequence

	spanned by YHc RT-nested PCR primers	•	•	193
6.3.9	YHc real-time qRT-PCR	•	•	194
6.3.9.1	Primer selection and optimization of the YHc qRT-PCR	٠	•	194
6.3.10	Analytical sensitivity of the YHc qRT-PCR assessed using	serial		
	10-fold dilutions of <i>in vitro</i> -transcribed RNA .	•	٠	198
6.3.11	Intra- and inter-assay reproducibility of the YHc qRT-PCR	•	•	199
6.3.12	Use of the YHc qRT-PCR to quantify viral loads in tissues	of shrin	np	
	infected with different YH-complex virus genotypes.	•	•	200

200 DISCUSSION. 6.4

CHAPTER 7

.

General Discussion

Bibliography

216

Appendices 243

xiv

.

- **e**.

List of Figures

- **Fig. 1.1** Genome organization of the 26,235 nt (+) ssRNA genome of GAV and the partial genome sequence of YHV, including the ORF1a/1b replicase gene and the structural genes.
- Fig. 3.1Nucleotide sequence alignment of the genome regions of genotypes 1
(YHV), 2 (GAV), 3 and 4 showing sequences targeted by primers used in
the first, second and third generation RT-nested PCRs.
- **Fig. 3.2** DNA products amplified from RNA isolated from *P. monodon* postlarvae

obtained from hatcheries in Vietnam suspected of being infected with either YHV genotypes 2 or 3 using the first generation YH30/31 RT-nested PCR (Section 3.2.1).

- **Fig. 3.3** DNA products amplified from RNA of different YHV genotypes using the third generation RT-nested PCR (Section 3.2.3).
- **Fig. 3.4** Unrooted, neighbour-joining phylogenetic tree constructed from a Clustal X multiple alignment of a 671 nt sequence in the ORF1b replicase gene obtained for 57 isolates including the reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref).
- **Fig. 3.5** Unrooted, maximum parsimony phylogenetic tree constructed from a Clustal X multiple alignment of a 671 nt sequence of the ORF1b replicase gene obtained for 57 isolates including the reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref).

Fig. 3.6 Clustal X multiple alignment of consensus nucleotide sequences determined for YH-complex virus isolates that clustered into each of the genotypes 1 to 6 in phylogenetic analyses of the 671 nt ORF1b gene sequence.

- Fig. 3.7Unrooted, neighbour-joining phylogenetic tree constructed using a Clustal
X multiple alignment of the 223 aa sequence deduced from the 671 nt
ORF1b gene amplicon of 35 selected isolates and the reference strains of
YHV (THA-98-Ref) and GAV (AUS-96-Ref).
- **Fig. 3.8** Unrooted, maximum parsimony phylogenetic tree constructed using a Clustal X multiple alignment of the 223 aa sequence deduced from the 671 nt ORF1b gene amplicon of 35 selected isolates and the reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref).

Fig. 3.9 Clustal X multiple alignment of consensus 223 aa sequences deduced from

consensus 671 nt ORF1b gene sequences of the YH-complex virus isolates that clustered into genotypes 1 to 6 in phylogenetic analyses of their nucleotide sequences.

Fig. 4.1 DNA products spanning (a) a 3'-terminal genome region and (b) a region from the ORF3 gene C-terminus to the genome 3'-poly-A-tail amplified using oligo-dT-primed cDNA and a 3'-poly-A-anchored PCR method (Section 4.2.2.2).

- **Fig. 4.2** Multiple alignment of the putative genotype 2 (GAV) ORF4 gene nucleotide sequence with the comparable sequences of genotypes 1, 3, 4 and 5.
- **Fig. 4.3** Multiple alignment of the putative genotype 2 (GAV) ORF4 gene amino acid with the comparable truncated sequences of genotypes 1, 3, 4 and 5.
- **Fig. 4.4** Multiple alignment of the putative genotype 2 (GAV) ORF4 gene amino acid sequence with the comparable sequences of genotypes 1, 3, 4 and 5 generated using nucleotide sequences manually adjusted so that codons matched those of genotype 2.
- **Fig. 4.5** PCR amplification of a ~1.3 kb 5'-terminal ORF3 gene region of representative isolates of genotypes 1, 2, 3 and 4.
- **Fig. 4.6** PCR amplification of ~700 nt 3'-terminal ORF3 gene region of representative isolates of genotypes 1, 2, 3 and 4.
- **Fig. 4.7** PCR amplification ~3.0 kb central ORF3 gene region of representative isolates of genotypes 3 and 4.
- Fig. 4.8PCR amplifications a ~1.0 kb central ORF3 gene region of a representative
genotype 3 isolate as described in Section 4.3.2 using the isolate-specific
PCR primer pair GAV239F/GAV247R.
- Fig. 4.9Semi-nested PCR amplification of a ~2.6 kb central ORF3 gene region of a
representative genotype 3 isolate as described in Section 4.3.2 using the

isolate-specific PCR primer pair GAV251F/GAV247R followed by seminested PCR using the primer pair GAV251F/GAV252R.

- **Fig. 4.10** Clustal X multiple alignment of the ORF3 gene amino acid sequence of genotypes 1, 2, 3 and 4.
- **Fig. 4.11** SignalP 3.0 data generated using ORF3 gene amino acid sequence of genotype 5 isolate THA-03-SG21 showing the signal peptidase cleavage site ($SQ\downarrow ES^{231}$), and the predicted cleavage probability marginally below the 0.5 threshold value, predicted to generate the N-terminus of mature gp116 glycoprotein.
- Fig. 4.12Neighbour-joining tree constructed from a Clustal X multiple alignment of a
ORF3 gene amino acid sequence of representative isolates of genotypes 3
(VNM-02-H93), genotype 4 (IND-02-H9) and GenBank sequences of
reference genotype 1 (THA-98-Ref) and genotype 2 (AUS- 96-Ref) isolates.

Fig. 4.13 Neighbour-joining tree constructed from a Clustal X multiple alignment of ORF3 amino acid sequences of genotype 1 (THA-98-Ref) and 2 (AUS-96-Ref) reference isolates and genotype 3 (VNM-02-H93) and 4 (IND-02-H9) isolates in which hypervariable sequences following TM domain 3 (corresponding the Ala²²⁸ to Ser³¹⁹ sequence in genotype 2) were deleted (Section 4.3.3.2).

xvi

- The Clustal X multiple alignment of amino acid sequences spanning the N-**Fig. 4.14** terminal gp116 region of the ORF3 gene of the reference genotype 1 and 2 isolates and 28 field isolates comprising representatives of the six YHcomplex virus genotypes.
- PCR amplification a ~800 bp region spanning the ORF2 gene and flanking **Fig. 4.15** IGRs of representative isolates of genotypes 1, 2, 3 and 4 as described in Section 4.3.3.1 using (a) degenerate PCR primer pair ORF2- 4F/ORF2-6R followed by (b) semi-nested PCR using the degenerate primer pair ORF2-4F/ORF2-5R.
- Clustal X multiple alignment of the ORF2 gene nucleotide sequence of the **Fig. 4.16** reference genotype 1 and 2 isolates and isolates of genotypes 3, 4 and 5.

- **Fig. 4.17** Clustal X multiple alignment of amino acid sequences deduced for the ORF2 gene of genotypes 1 to 5.
- **Fig. 4.18** Neighbour-joining tree constructed from a Clustal X multiple alignment of the ORF2 gene nucleotide sequence of the reference genotype 1 (THA-98-Ref) and 2 (AUS-96-Ref) isolates and isolates of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21).
- **Fig. 4.19** Neighbour-joining tree constructed from a Clustal X multiple alignment of the ORF2 gene amino acid sequence of the reference genotype 1 (THA-98-Ref) and 2 (AUS-96-Ref) isolates and isolates of genotypes 3 (VNM-02-H93), 4 (IND-02-H9) and 5 (THA-03-SG21).
- Clustal X multiple alignment of IGR1 sequence including portions of the **Fig. 4.20** upstream ORF1b gene and downstream ORF2 genes of genotypes 1 to 5.

- **Fig. 4.21** Clustal X multiple alignment of IGR2 sequence including portions of the upstream ORF2 gene and downstream ORF3 gene of genotypes 1 to 5.
- Clustal X multiple alignment of the IGR3 sequence including portions of **Fig. 4.22** the upstream ORF3 gene and putative downstream ORF4 gene of genotypes 1 to 5.
- **Fig. 4.23** WebLogo presentation of nucleotides conserved and less conserved between genotypes 1, 2, 3, 4 and 5 in the TRS elements in IGR1 and in IGR2 as well as between the TRS elements of both IGRs.
- Clustal X multiple alignment of the 3'-UTR sequence of genotypes 1, 2, 3 **Fig. 4.24** and 4 downstream of the putative ORF4 gene to the genome 3'-poly- A-tail.

Conserved RNA secondary structures predicted using MFold to form in the **Fig. 4.25** 3'-UTR sequence of genotypes 1, 2, 3 and 4 downstream of the putative ORF4 gene to the genome 3'-poly-A-tail.

Fig. 5.1 Nucleotide sequence alignment of the N-terminal ORF3 gene region of genotype 1 (YHV isolate THA-98-Ref), 2 (GAV isolate AUS-96-Ref), 3 (VNM-02-H93) and 4 (IND-02-H9) isolates showing regions targeted by degenerate RT-nested PCR primers.

xvii

N-terminal ORF3 gene products amplified by RT-nested PCR. **Fig. 5.2**

Fig. 5.5

- Neighbour-joining tree constructed from a Clustal X multiple alignment of a **Fig. 5.3** ~1.25 kb sequence at the 5'-end of the ORF3 gene of 28 YH- complex virus isolates and including the published sequences of reference strains of YHV (THA-98-Ref) and GAV (AUS-96-Ref).
- Maximum parsimony tree constructed with the PAUP* heuristic search **Fig. 5.4** algorithm from a Clustal X multiple alignment of the same ~1.25 kb ORF3 gene sequence of the same isolates exampled in Fig. 5.3.
 - Neighbour-joining tree constructed from a Clustal X multiple alignment of a ~1.0 kb sequence in the ORF1b gene of the same isolates examined in Fig 5.3.
- Maximum parsimony tree constructed with the PAUP heuristic search **Fig. 5.6** algorithm from a Clustal X multiple alignment of a ~1.0 kb sequence in the ORF1b gene of the same isolates examined in Fig. 5.3.
- Neighbour-joining tree constructed using a Clustal X multiple alignment of **Fig. 5.7** the amino acid sequences deduced for the ~ 1.25 kb ORF3 gene region of the isolates examined in Fig. 5.3.
- Maximum parsimony tree constructed with the PAUP heuristic search **Fig. 5.8** algorithm using a Clustal X multiple alignment of the amino acid sequences deduced for the ~ 1.25 kb ORF3 gene region of the isolates examined in Fig. 5.3.

- Neighbour-joining tree constructed using a Clustal X multiple alignment of **Fig. 5.9** the amino acid sequences deduced for the ~1.0 kb sequence in the ORF1b gene of the isolates examined in Fig. 5.3.
- Maximum parsimony tree constructed with the PAUP* heuristic search **Fig. 5.10** algorithm using a Clustal X multiple alignment of the amino acid sequences deduced for the ~1.0 kb sequence in the ORF1b gene of the isolates examined in Fig. 5.3.
- RT-nested PCR amplification of the ~ 3.2 kb region encompassed by the **Fig. 5.11** ORF1b and ORF3 amplicons from 3 selected recombinant YH-complex virus isolates.
- RT-PCR amplification of a ~1.2 kb ORF1b-ORF2 gene region of **Fig. 5.12** recombinant isolates IDN-04-H10, VNM-02-H258 encompassing the predicted breakpoint.

Nested PCR amplification of DNA fragments within the ~1.2 kbp ORF1b-**Fig. 5.13** ORF2 PCR amplicons described in Fig. 5.12 using the isolate- specific PCR primer pairs P11, P12, P13 and P14 shown in Table 5.6. (Recombinant isolate IDN-04-H10).

Fig. 5.14 Nested PCR amplification of DNA fragments within the ~1.2 kbp ORF1b-ORF2 PCR amplicons described in Fig. 5.12 using the isolate- specific PCR

xviii

primer pairs P21, P22, P23 and P24 shown in Table 5.6. (Recombinant isolate VNM-02-H258).

- Fig. 5.15 SimPlot analysis of the sequences of the ~4.6 kb region encompassing the ORF1b and ORF3 amplicons of putative recombinant isolates IDN- 03- H10, VNM-02-H258 and PHL-03-H8 with representative isolates of genotypes 2 (AUS-96-Ref), 3 (VNM-03-H93) and 5 (THA-03-SG21).
- **Fig. 5.16** Clustal X multiple alignments of the nucleotide sequence of the 3'- terminal region of the ORF1b gene and adjoining IGR1 encompassing the recombination break identified by LARD in the recombinant isolates VNM-02-H258, IDN-04-H10, and PHL-03-H8.
- **Fig. 6.1** Clustal X alignment of a partial region in the 671 nt sequence in ORF1b of reference YHV (genotype 1) and GAV (genotype 2), as well as representative isolates of genotypes 3, 4, 5 and 6 bounded by the YH31 PCR primers.
- Fig. 6.2YHc RT-nested PCR amplification of RNA isolated from representative
isolates of genotype 1 to 6.
- **Fig. 6.3** YHc RT-nested PCR amplification of 17 representative isolates of YHcomplex virus genotypes 1 to 6.
- Fig. 6.4YHc RT-nested PCR analysis of 10-fold dilutions of cDNA prepared from
RNA isolated from shrimp infected at high levels with either (a) YHV
(genotype 1) or (b) GAV (genotype 2).
- **Fig. 6.5** Detection limit of the YHc RT-PCR assayed using 2 independent cDNA series, (a) series 1 and (b) series 2, prepared to serial 10-fold dilutions of a 788 nt GAV synthetic RNA ranging between 2.5 x 10¹⁰ and 2.5 RNA copies.
- **Fig. 6.6** Detection limit of the YHc RT-nested PCR assayed using the PCRs to (a) cDNA series 1 and (b) cDNA series 2 shown in Fig. 6.5.
- Fig. 6.7Comparative amplifications of RNA from field isolates of YH-complex
virus genotypes using (a) YHc RT-PCR step (b) RT-PCR step of OIE Test 2
and (c) OIE Test 1.
- Fig. 6.8Comparison of the nested PCR steps of the (a) YHc RT-nested PCR and (b)OIE Test 2 RT-nested PCR, for which PCR amplifications are shown in Fig.6.7.

Fig. 6.9 RT-PCR amplification of RNA isolated from representative isolates of YHcomplex virus genotypes 1 to 6 using primers designed to the β -actin gene of *P. monodon* described in Section 2.13.

Fig. 6.10 Multiple alignment of reference and field isolates of genotypes 1 (YHV) and 2 (GAV) with field isolates of genotypes 3 and 4 using the ORF1b gene sequence bounded by the YHV-specific RT-PCR primers 10F and 144R described by Wongteersupaya *et al.* (1997).

Fig. 6.11 Multiple alignment of reference and field isolates of genotypes 1 (YHV) and 2 (GAV) with field isolates of genotypes 3 and 4 in the ORF1b gene sequence encompassing the PCR primers (GY1, GY2, GY4, GY5, Y3 and G6) employed in the OIE Test 2 multiplex RT-nested PCR described by Cowley *et al.* (2004).

- Fig. 6.12Unrooted, neighbour-joining trees constructed using Clustal X multiple
alignments of the nucleotide sequences encompassing the (a) 671 nt ORF1b
gene region amplified by the YH31 PCR primers and (b) 95 nt region
internal to the 671 nt region bounded by the YHc RT-nested PCR primers.
- **Fig. 6.13** YHc qRT-PCR amplification of RNA isolated from representative isolates

of genotypes 1 to 6.

- **Fig. 6.14** (a) YHc qRT-PCR amplification plots generated using a 10 pmols/ μ l primer concentration for RNA of a genotype 1 field isolate and an uninfected *P*. *semisulcatus* and (b) the corresponding DNA dissociation curves showing Tm = 77.5°C and Tm=73.5 °C obtained with the genotype 1 RNA and with RNA from uninfected shrimp.
- **Fig. 6.15** (a) YHc qRT-PCR amplification plots generated using different primer concentrations (10, 5, 2.5 and 1.0 pmoles/ μ l) and RNA of a genotype 1 field isolate and an uninfected *P. semisulcatus* and (b) the corresponding DNA dissociation curves showing a Tm = 77.5°C obtained with the genotype 1 RNA at primer concentrations 5, 2.5 and 1.0 pmoles/ μ l but not at 10 pmoles/ μ l, as shown in Fig. 6.14.
- **Fig. 6.16** DNA dissociation curve of a product with at $Tm = 77.5^{\circ}C$ amplified from a genotype 1 field isolate using the YHc qRT-PCR and a 5 pmoles/µl primer concentration.
- **Fig. 6.17** DNA dissociation curves of products with at $Tm = 77.5^{\circ}C$ amplified from a representative genotype 1, 2, 3, 4, 5 and 6 isolates using the YHc qRT-PCR and a 5 pmoles/µl primer concentration.
- **Fig. 6.18** YHc qRT-PCR amplification plots obtained using 10-fold dilutions (1.25 x 10^9 to 0.5 cDNA/RNA equivalents per 5 µl reaction) of GAV synthetic RNA.
- Fig. 6.19The standard curve for YH-complex genotypes obtained using the YHc
qRT-PCR and cDNA prepared to a 10-fold dilution series of GAV synthetic
RNA $(1.25 \times 10^9 \times 125 \text{ RNA copies}).$

XX

List of Tables

- **Table 1.1**Comparison of the characteristics of the Roniviridae with other families in
the Nidovirales
- **Table 3.1**Oligonucleotide primer pairs used in the first and second generation RT-
nested PCRs to detect genotypes in the YHV complex
- **Table 3.2**Oligonucleotide primer pairs used in the third generation RT-nested PCR to
detect genotypes in the YHV complex
- **Table 3.3**Nucleotide sequence identities in the ORF1b gene amplicon between
consensus sequences representing genotypes 1 to 6
- **Table 3.4**Nucleotide sequence identity in the ORF1b gene amplicon of isolates
clustering in genotype 1
- **Table 3.5**Nucleotide sequence identity in the ORF1b gene amplicon of isolates
clustering in genotype 2
- **Table 3.6**Nucleotide sequence identity in the ORF1b gene amplicon of isolates
clustering in genotype 3
- **Table 3.7**Nucleotide sequence identity in the ORF1b gene amplicon of isolates
clustering in genotype 4
- **Table 3.8** Nucleotide sequence identity in the ORF1b gene amplicon of isolates

clustering in genotype 5

- **Table 3.9**Nucleotide sequence identity in the ORF1b gene amplicon of isolates
clustering in genotype 6
- **Table 3.10**Amino acid sequence identities in the ORF1b gene amplicon between
consensus sequences representing genotypes 1 to 6
- **Table 4.1**List of *P. monodon* samples form which 3'-terminal genome sequences of
genotypes 3, 4 and 5 were generated
- Table 4.2Primer sequences used for RT- nested PCR amplification of a region from
the ORF3 gene C -terminus to the genome 3'-poly-A-tail of genotypes 3
and 4
- **Table 4.3** Primer sequences used for RT-nested PCR amplification of an N-terminal

ORF3 gene region of genotypes 3 and 4

Table 4.4Primer sequences used for RT- nested PCR amplification of the central
ORF3 gene region of genotypes 3 and 4

Table 4.5Primers used for sequencing amplicons generated to the central ORF3 generegion of genotypes 3 and 4

- Primer sequences used for RT-semi-nested PCR amplification of the Table 4.6 ORF1b- IGR1-ORF2 and ORF2-IGR2-ORF3 genome regions of genotypes 3 and 4
- Comparisons of nucleotide and amino acid lengths of the IGRs, ORFs and Table 4.7 3'-UTR in the 3'-terminal genome regions of genotype 1, 2, 3, 4 and 5
- Comparisons of nucleotide and amino acid lengths of the IGRs, ORFs and Table 4.7 3'-UTR in the 3'-terminal genome regions of genotype 1, 2, 3, 4 and 5
- Boundary amino acid positions of the six ORF3 TM helices of genotypes 1, Table 4.8 2, 3 and 4 predicted using TMHMM2.0
- Nucleotide sequence identity amongst genotypes 1, 2, 3 and 4 determined Table 4.9 using the entire ORF3 gene and the N-terminal segment, gp116 and gp64
- Amino acid sequence identity amongst genotypes 1, 2, 3 and 4 determined **Table 4.10** using the entire ORF3 and the N-terminal segment, gp116 and gp64
- Nucleotide and amino acid sequence identity in the ORF2 gene amongst **Table 4.11** genotypes 1, 2, 3, 4 and 5
- Penaeus monodon samples selected for phylogenetic analysis in the ORF3 Table 5.1 gene region
- Sequences of PCR primers used for amplification and sequence analysis of Table 5.2 the ORF3 gene amplicon

- Sequences of PCR and nested PCR primers used to amplify the genome Table 5.3 region spanned by the ORF1b and ORF3 gene amplicons
- Primers used to sequence the genome region spanned by the ORF1b and Table 5.4 ORF3 gene amplicons
- Sequences of PCR and nested PCR primers used to amplify a ~ 1 kb region Table 5.5 across the breakpoint between the ORF1b and ORF3 gene amplicons of putative recombinants IDN-04-H10 and VNM-02-H258
- Table 5.7 The list of nested PCR primers, their sequence specificity and respective target genotype used to confirm sequences had recombined in recombinants IDN-04-H10 and VNM-02-H258
- Summary of putative recombinant isolates and their parental YHV genotype Table 5.8 origins deduced from phylogenetic relationships determined using partial

nucleotide sequences of the ORF1b and ORF3 genes

- Table 5.8 Summary of putative recombinant isolates and their parental YHV genotype origins deduced from phylogenetic relationships determined using partial nucleotide sequences of the ORF1b and ORF3 genes
- Nucleotide and amino acid sequence identity in the ORF3 gene amplicon Table 5.9 between isolates clustering in genotype 3

Table 5.10Nucleotide and amino acid sequence identity in the ORF3 gene ampliconbetween isolates clustering in genotype 4

Table 5.11Nucleotide and amino acid sequence identity in the ORF3 gene ampliconbetween isolates clustering in genotype 5

Table 5.12Nucleotide and amino acid sequence identity in the ORF3 gene amplicon
between isolates clustering in genotype 2

Table 5.13Nucleotide and amino acid sequence identity in the ORF3 gene amplicon
between isolates clustering in genotype 1

Table 5.14 Nucleotide and amino acid sequence identity in the ORF3 amplicon

- determined using consensus sequences deduced for the six YH-complex virus genotypes
- **Table 5.15**Nucleotide sequence identities between recombinant isolates and parental
genotypes in regions upstream and downstream of the recombination site
and recombination likelihood values generated using the LARD software
- Table 6.1Sequences of primers used in the YHc RT-nested PCR and YHc qRT-PCRtests
- Table 6.2Comparative assessment of the OIE recommended PCR Tests 1 and 2 and
the YHc RT-nested PCR using representative isolates of YH-complex virus
genotypes 1 to 6
- Table 6.3
 Cycle threshold (Ct) values obtained in the YHc qRT-PCR for three cDNA

 batches prepared to a 10 fold dilution series of CAV supthetic DNA

batches prepared to a 10-fold dilution series of GAV synthetic RNA

List of Abbreviations

.

\$	dollar
μg	microgram
μĺ	microlitre
μM	micromolar
μm	micromoles
\sim	approximately
(+)ssRNA	positive sense single stranded ribonucleic acid
aa	amino acid
ADB	Asian Development Bank
3CL ^{pro}	chymotrypsin-like protease
AGRF	Australian Genome Research Facility
AU-Rich	adenine and uracil rich
AUS	Australia
BMV	bromomosaic virus
bp	base pairs
cDNA	complimentary deoxyribonucleic acid
CP	capsid protein gene
C-terminal	carboxy-terminal
CSIRO/LI	Commonwealth Scientific and Industrial Research Organisation/
	Livestock Industries
DNA	deoxyribonucleic acid
dsRNA	double-stranded ribonucleic acid
EDTA	ethylenediamine tetraacetic acid
FMDV	foot and mouth disease virus
σ σ	gram
GAV	gill-associated virus
GC-Rich	guanine and cytosine-rich
on116	glycoprotein 116
on64	glycoprotein 64
H_{0}	no recombination
H ₁	hypothesis of recombination
H&E	haematoxylin and Eosin
HCV	henatitis C virus
HIV	human immunodeficiency virus
IRV	infectious bronchitis virus
	India
IGR	inter gene region
IUC	immuno-histochemistry
IHHNIV	infectious hypodermal and hematopoietic necrosis virus
	Indonesia
ICH	in situ hybridisation
lon Vh	kilohose
kbn	kilohase naire
kup kDa	kilodalton
KDa I DV	KIIOUAIIOII - lootote dobudrogongeo olouoting virug
ΙΟ	laciale deligenase elevaling vilus lymphoid organ
	Tymphoid organ Tymphoid organ trimts
	rymphola organ virus
· IVI N / A 1_	
	monocional antibody
MBL	maltose-binding protein

· MHV	mouse hepatitis virus
mM	millimolar
mols	moles
MOZ	Mozambique
MP-Tree	maximum parsimony tree
Mr	Migration of relative mass
mRNA	messenger ribonucleic acid
MSGV	monodon slow growth virus
MYS	Malaysia
NARA	National Aquatic Resources Research and Development Agency
nt	nucleotide
N-terminal	amino-terminal
	nitro allulara anguma immuna again

INCIA nirocenulose-enzyme immunoassay NJ-Tree neighbour-joining tree nM nanomolar OIE Office International des Epizooties ORF open reading frame isoelectric point pI nucleoprotein gene p20 PCR polymerase chain reaction PL postlarvae PL^{pro} papain-like protease picomoles pmol PRCV porcine respiratory coronavirus RdRp RNA-dependent RNA polymerase RNA ribonucleic acid revolutions per minute rpm **RT-PCR** reverse transcriptase-polymerase chain reaction coronavirus spike glycoprotein S SARS-CoV severe atypical respiratory syndrome-coronavirus subgenomic sg sgmRNA subgenomic messenger ribonucleic acid SPF specific pathogen free tissue culture infectious dose 50% endpoint TCID₅₀ TEM transmission electron microscopy TGEV transmissible gastroenteritis virus THA Thailand TM transmembrane Tm melting temperature Tris tris-hydroxymethyl-aminomethane TSV Taura Syndrome Virus Tween20 polyoxyethylene (20) sorbitan monolaurate TWN Taiwan UV ultra-violet

VNM	Vietnam
WSSV	white spot syndrome virus
YHc RT-nested PCR	yellow head consensus reverse transcriptase-nested polymerase
	chain reaction
YHc qRT-PCR	yellow head consensus quantitative reverse transcriptase-polymerase
	chain reaction
YHD	yellow head disease
YHDLV	yellowhead disease-like virus
YHV	yellow head virus
	•